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ABSTRACT 

In this report we present two alternate derivations of the 

equations governin* the themodynaaics for a siaple nodel of fireball 

rise and entrainaent. These two derivations place emphasis on different 

»ets of themodynaaic variables.  It is shown that, except for difference 

in notation, the resulting equations governing the fireball thermo- 

dynaaics are identical. One of the reasons for presenting the two 

different derivations is to clarify soae of the differences and simi- 

larities of work published by various authors in this area. Unlike the 

work aost recently published by us, there are soae other treatments 

where teras involving the tiae rate of change of the specific heat ratio 

are neglected. We point out that these terms aie as important as any of 

the other terms in the equations governing the fireball thermodynamics 

in the cases where (I) energy storage in internal degrees of freedom 

is significant and (2) where energy transfer via dissociation and 

association processes Is significant. 
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1.    INTRODUCTION 

In a previous report*w« presented results of • coaputer code 

designed to calculate the rise, entrainaent, and cheaistry of a nuclear 

fireball.  In that report we also presented derivations of, (1) the 

equations of aotion of the fireball rise, (2) the equations governing 

the thcr«odyna«ics and (3) the equations foverning the ehernstry of the 

fireball. Ne also presented a description of the coaputer code used 

to integrate the coupled set of differential equations governing the 

rise, theraodynaaics and cheaistry of the fireball during its rise 

through the atmosphere. 

In Urs report we shall re-derive the equations governing 

the theraodynaaics of the fireball using a different notation. The 

notation used here is coapleaentary to the notation used in Reference 1 

in the sense that the two notations tend to place eaphasis on different 

physical quantitities in somewhat the saae way as do the different sets 

of thcrmodynamic variables in ordinary thermodynamics, which sets are 

related to one another by various Lcgendrc transformations. 

In Section 2 we review the derivation of the thcrmodynamic 

equations given in Reference 1, in order to make clear the prcais^s on 

which that derivation was based.  In Section 3 we present an analogous 

derivation based on another thcrmodynamic notation which is that often 

used in the description of high temperature air in equilibrium. This 

type of notation haf been used by various authors in fireball calcula- 

tions.  In Section 4 we shall show that the equations derived in 

Sections 2 and 3 are identical except for notation.  In Section 4 we 

also present some concluding remarks. 

References 3, 4, and 5 arc meant to be typical, not exhaustive. 
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2.    REVltW OF THE DERIVATION OF EQUATIONS GOVERNING THE 
THERMODYNAMICS OF THE FIREBALL 

In Reference 1 we presented a derivation of the equations 

governing the theraodynaaics of the fireball. This derivation was 

based on several preaises regarding the behavior of the fireball gas 

during entraiiwent of cold air fro« the surrounding ambient atmosphere. 

The first premise is that the fireball gas is 'n kinetic 

equilibrium although not, in general, in chemical equilibrium. 

The second premise is that the pressure contributions of 

the various chemical species is additive, i.e., that Dalton's law of 

partial pressures is valid. 

The third premise is that «.he contributions to the internal 

energy of the fireball gas from each of the chemical species is 

additive. 

The fourth premise is that the equations governing the 

thermodynamics of the fireball during rise and entrainment, can be 

derived by consideration of two infinitesimal processes. The first 

infinitesimal process is the mixing of an increment of ambient air 

with the fireball at constant pressure. The second infinitesimal 

process is an adiabatic expansion of the fireball. 

The first, second, and third premises allow us to express 

the press*.re and internal energy (refered to unit volume) of the 

fireball gas and the ambient atmosphere in the form 

p - En.kT . Ef « LM^CT) ♦ C.] (2.1) 

P " ?njkTa ' Ea ' ^nj[fj(V ♦Cjl ^ 



In IM«. (2.1) and (2.2) the turn over I U a »ua crer the many  cheatcal 

»pcclc» of the fireball whilr the »ua over J it a tua over the few 

chcaical »pecirs of the turrounülng aabient ataosphere. n. denote» 
th 

the miabcr doaalty (concentration) of the i   »peciet, T the fire- 

ball (kinetic) teaperature, T  the tcaperature of the aabient 

ataosphcrr. k (oltzaann's constant, f.(T) the teaperature dependence 
th 

of the internal energy contribution of the i   species and C.  the 
th 

heat of foraation of the i   species. 

In ■qs.(2.1) and (2.2) the pressures of the fireball and the 

aabient atmosphere are the saae, corresponding to pressure equilibriua 

of the fireball with the aabient ataosphere. 

In Reference 1 we coabined the two infinitesiaal processes 

aentioncd above and derived the equations which envcm the therao- 

dynamics of the fireball. To avoid any confusion that aight arise 

in the reader's mind about the effects arising from each of the 

processes we shall here consider each process separately and show that 

the same results are obtained. 

We first consider the process of mixing at constant pressure 

a mass AM of ambient air with the fireball gas. Ne can associate a 

volume AV  of the ambient air parcel and we have 

AV  - P (2.5) 
pa 

where 

p« ' ^Vj (2,4) 



In M.(2.4)    p^    rcprr»rnts th« dmtitx of MMCHI air and    w     tk» 

■olecular tiright of th«    ;th    »pectv«.    For th« conttuit protMiro 
procost «• hay« 

^liuil        %    & * AV»> ^ l"| # ^^KiH  • ATt) • CJ    (2.S) 

Buatui  .  vpiU|CT) . cj ♦ ^.E^UjCT,) . c^ 

final V • AV, 
(2.h) 
(2.7) 

VUitl.) ■ V*AV. Cii 

In E()».(2.S) - (2.i), C denote» the total internal energy of th« 

fireball. &V| the change in fireball voluw. An1 th« change in 

species concentrations, and AT| th« change in the fireball to^tra- 

ture. The constant pressure process is on« in »huh no h«at 1» addad 

tc th« th«r»od)maaic tystM consisting of th« fireball and th« anbient 

air pare«! of nass IM.    fhus. th« flrat la« of theraodynanics yitldt 

0 * ^ ■ P(Vfin.l * Vi„itial^ * Cfinal ' initial 

K« substitute the expressions (2.S) - (2.1) into E<|.(2.9) and keep 

through first order mfinitesinols. The result It 

df 
AV.lp ♦  I n^f^Cj)) ♦ VEAn^f^^ ♦ V JT ^ -^ AT, 

AM mm 

■ 5:",,^")(fi<T."c
J>i 

U.») 

(2.10) 

where    f.     and    d^/dT    are evaluated at    T.    The equation of state 
yields 

Ap,    •    0    -   £ AnlkT ♦ En.kAT, 
i      l i    * 

(2.11) 





MMlRl E4)«.(2.11) .inJ (2.19) unJ noting 

Aoj • Anj1 ♦ An^ , AT - ATi ♦ ATi (2.20) 

we obtain the differential for« of 

P " £ "jkl (2.21) 

i.e., the equation of state. Adding Eqs.(2.10) and (2.17) and noting 

AV - AV, ♦ AV2  , (2.22) 

the liq. (2.4) and 

M " V^Vi (2-23) 

we obtain 

dn, df. 
0 - 

I j«» an. ai . ._ 

(2.24) 
1 Itp-EnCf .C)l 
i.Mjnj/    ,    '   >       ' 

Eq.(2.24) is identical with Eq.(3-4S) of Reference 1. 

Eq.(2.21) and (2.24), which govern the thervodynaaics of the 

fireball, are identical with those obtain«d by combining the two in- 

finitesinal processes (as was done in the derivation given in Reference 

1). Since coabining the processes shortens the derivation we shall 

treat the problea that way in the following section. 



  

3.    ALTERNATE DERIVATION OF THE THERMODYNAMICAL EQUATIONS 

In this section wc shall derive the equations governing the 

thermodynamics of the firehall. using a different notation than that 

of the previous section.  In this notation we write the equation of 

stale in the forn; 

pv • z(A)RTsXR.r (}1) 

where 2 is the number of moles of air at temperature T per mole 

of air at STP at sea level. V is the volume of the fireball, M 

the mass of the fireball, T the temperature of the fireball, R 

the universal gas constant, mo tiie gram-mole».ular-mass of STP air 

at sea level, and N the number of moles in the fireball.  Uq.(3.1J 

is an equation of state for a real (as distinct from an ideal) gas and 

therefore the quantities Z and N arc not constant but vary when dis- 

sociation and association processes occur. The gas constant is given by 

R = AK (3.2) 

where A is Avogadro's number and k is Bolt^mann's constant. The 

graro-molecular-mass is given by 

m0  =  A il. (3.3) 

where Ü. is the average molecular mass associated with STP air at 

sea level. 

We write the internal energy of the fireball in the form 

B - NCV(T)T a4) 

where the number of moles of gas in the fireball is given by 

N =  Z (jJL) = VZ (p/»e) (3.5) 

The enthalpy, ||, of the fireball is written 

H = E ♦ pV « NC (T)T (3.6) 
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Note that   the- quantities    Cy    and    Cp    of l.qs.(5.4)  and   (3.6)  arc 

not the specific heats per raole as they would he conventionally defined 

in thermodynamics.     In the ccventional  sense, 

LV NblA,    '    Cp      '    Ntej (3.7) 
V P 

where Cy«, C^'  are the specific heats per mole.8  Ke shall find it 

convenient in what follows to define a quantity 

Y- Cp(T)/Cv{T) (38j 

where C^. Cy are defined by r:qs.(3.4) and (3.6). Pe conventional 

specific heat ratio Y', on the other hand, is given by y' = C '/C • 
P  V 

Ke now consider the combined infinitesimal process of adding, 

at constant pressure, a parcel of ambient air of mass, AM, to the fireball 

and then expanding the fireball adiabatically.  From Eq.(3.1) we obtain 

AP = AZ(^)TP * Zfe)^ * <£)™P (3.9) 

The initial internal energy of the system consisting of the fireball and 
the ambient air parcel is 

initial  = NCV(T)T * ^aWa (3-10) 

where 

^a "    Za(s7) = ZaAVa^a/,n^ (3.11) 



Tlte final internal energy is 

Kfinal  =  (N * AN) cv (T * AT) (T ♦ AT) 

The initial and fi.ial volumes of the systen are 

(3.12) 

V. it. ,  - V ♦ AV 
initial a 

Vfinal   = V.AV 

(3.13) 

(3.14) 

The first law of thermodynamics for this adiabatic process is 

0    =    dQ    =    kfinal   " initial)  kfinal   "  initial     ^^ 

he substitute üqs.(3.10),   (3.12),   (3.13)  and  (3.14)   into r:q.(3.15)  and 

keep through first order in infinitesimals.    The result  is 

p(AV - AVa)  * ANCVT ♦ N,!-^ T *  C^AT    -    A.NaCv(Ta)Ta (3.16) 

Eq.(3.9) can be rewritten (using Eq.(3.1)) 

ApV ♦ pAV = ANRT + NRAT 

Multiplying Eq.(3.17) by CV(T)/R and subtracting the result from 

Eq.(3.16) we obtain 

CV dCv 
p(AV - AVa) * — (ApV *  pAV) ♦ N -^p TAT = ANaCv(T )T 

We now introduce the quantity 

Cv ♦ R 

(3.17) 

(3.18) 

(3.19) 

and note that since p = M/V, we also have 

ÄV    AM  Ap 
V     M " p (3.20) 

      --■ 



—— 

Kilh these relations, hq. (3.11) and the relation 

w *R 
C(Ta) (3.21) 

wc find that tq.(3.18) hecomes 

i^fl = li^^iJMli  /Y - 1 VYa\ ZaTa)  1 dy   1 
P dt    Y p dt  M dt |   VY, - lA Y / ZT r Y dt (Y - 1) 

This equation and liq. (3.1), which we write in the form, 

(3.22) 

P ■ z ik)" (3.23) 

are the analogues of Eqs.(2.24) and (2.21) of the previous section. 

l:qs.(3.22) and (3.23) govern the thcrmodynamic behavior of the fireball. 

Alternate forms of Eqs.(3.22) and (3.23) can bt used instead 

but such alternate sets of two equations for the thc.inodynamic behavior 

must be equivalent to Eqs.(S.22) and (3.23). 

Note the presence of the last term on the right hand side of 
Eq.(3.22) involving the time derivative of the quantity y. 
As we shall see in the following section, this term is of the 
same size as the other terms appearing in l:q.(3.22). 

10 
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4.    EQUIVALE'JCF OF THE EQUATIONS GOVERNING THE THERMODYNAMICAL 
BEHAVIOR OF THE FIREBALL 

In this section we shall show that the set of Eqs. (2.21) 

and (2.24) is identical, except for notation, with the set {.iven hy 

Eqs.(3.22) and (3.23).  lor this purpose we find it convenient to re- 

introduce the variahlcs M, V in place of p in Hq.(3.22).  From 

Eqs.(3.20) and (3.22> we obtain 

1 dM/y-l \/Ya\ JLi  idY _1_      f. n 

M dtK-lÄY^ Tf    -  Y dt (Y-l)     l4,U 
j_ dV    i d£ v/Y-X Z-T 

From the Eqs.(2.21), (3.1) and (3.2) we obtain 

N - -^  (4.2) 

From Eqs.(2.1) and (3.4) 

NCVT «= vEn.^f. (T) ♦C.j (4.3) 

and substituting fo.' N from Eq.(4.2) we get 

^"i (fi*Ci) 
CV^ " A    ^ n.T  (4-4) 

From Eq.(3.1) and the analogous equation for the ambient atmosphere 

P ' Z (i^) PT = Za (ST) PaTa «'V 

11 



or 

Z T U'n' 
— i 1 1 

>." jv; 
The last form of Eq.(4.6) follows from the relation (2.4) and an 

analogous relation for p. 

It is convenient to use the notation of Eqs.(2.1) and (2.2), 

and in the following we drop the subscript f from the internal energy 

per unit volume, E-, of the fireball. The equations of state (2.21) 

and (3.1) are obviously identical if we make the identification (4.2). 

Using Uqs.(4.2), (3.3) and (3.5) we obtain 

TT  52 "i 
V3 i  1 

vu.n. (4-7) 
i * i 

It remains to show that r:qs.(2.24) and (4.1) are identical. With the 

notation of P.qs.(2.1) and (2.2) we can write Cq.(2.25) in the form 

a 

From Eq.(4.4) we have 

cv(T) = Ak p ' cp(T) = Cv * R B Ak (1 *t/p)   (4-9) 

Thus 

"T11 ' Ya ■ nr-* (4-105 
t- p ♦ h 

p ♦ E p   a 

12 
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and therefore 

111  .   JL     V1   .     E_ 
I 

Kith this notation l:q.(4.1) becomes 

o . »^ ./-ü-U^.idMj)/^\   a?|; - nf p  (4 12) v at    [^v.j p dt   M mr Pa [T^r) - ~(p^)     C4'12) 

The second term on the right-hand-side is cancelled by the first member 

of the last term on the right-hand-side and we obtain 

0    =    i ^1   *      1      « 1   dM   p  /»,+!i
a\ 

V 3F      T^tTdF   _   Mdt—&\j7rj (4.13) 

which is identical with Eq.C4.8). This concludes the demonstration of 

equivalence. 

linally we remark that the last term on the right-hand-side 

of Eq.(4.12) is, in general, of the same magnitude as the other terms 

in Eq.(4.12). The last term arises from the term invjlving dy/dt in 

nq.(4.1).  This term is evidently neglected in some other treatmcnVI of 

the fireball thermodynamics.  The last term in liq.(4.12) vanishes in 

the case of an ideal gas, where 

n - NRT   r    1 vr T 
P " "V" •  n " V NLVT (4.14) 

and the quantities N and Cv are constant.  In this case we have 

d£    Nk dT    NRT 1 dV 
dt  ~  V dt  "  V V dF (4•15) 

13 
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d^  !^v JI NCv i dv 
ilt     V dt " V \   dt (4.16) 

so tli;it 

dP ,  dH 
dT,: - dT'' = 0 (4.17) 

The treatment presented in the previous sections assumes that the fire- 

ball and ambient atmosphere gases have two properties in common with an 

ideal gas.  Ihese properties are (1) that the contributions to the 

pressure from the various species are additive and (2) that the contri- 

butions to the internal energy from the various species are additive. 

Fror th • point of view of a microscopic picture embodied in a statisti- 

cal i echanics description, these assumptions about the bulk properties 

of the gas are tantamount to the assumptions (1) that the behavior of 

the gas can be characterized in terms of a temperature and (2) that 

at constant temperature and species concentration (i.e., when there are 

no chemical reactions) the interactions among unbound particles 

(potential energy associated with interactions) make a negligible con- 

tribution to the internal energy compared with the energy associated 

with the kinetic and internal degrees of freedom of the particles of 

which the gas is composed. 

On the other hand, the treatment assumes (A) that the con- 

tribution to the internal energy from the internal degrees of freedom 

of the various species is important and (B) that the change in the 

internal energy of the gas di»e to changes in the species concentrations 

is an important effect. The ki.jetic energy released when recombination 

takes place and the kinetic energy absorbed when dissociation occurs 

provide important energy transfer mechanisms. Suffice it to say that 

the last term on the right-hand side of Eq.(4.12) makes an important 

contribution to both effects (A) and (B). 

14 
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